
JOIRYAI 01 (‘0Ml’l:TAIIONAL PHYSI(‘S 62. 1 25 lIc)86 I 

Two- Dimensional Fully Adaptive Solutions of 
Solid-Solid Alloying Reactions* 

M. D. SMOOKE 

M. I-. KOSZYKOWSKI 

Received January 17. 1984; rcbiscd Seprembcr 10. 1981 

Sohd sohd alloying reactions occur III a variety of p>rotcchnical apphcations. They arise 
when a minturc of pov,dcrs composed of appropriate oxidizing and reducing agents 1s hcatcd. 

The large quantity of heat rvolvcd produces a bell-propagating reaction front that IS often very 
narrow with sharp changes in hoth the tempcraturc and the concentrations of the reacting 
species. Solution of problems of this type with an equispaced or mildly nonuniform grid car 
bc cxtrcmcly mcffwnt. In this paper WC dcxlop a two-dimensional fully adaptive method for 
wiring problcm~ of this clan. The method adaptiwly adjust5 the number of grid pwnrs 
needed tn equtdistrihute a positive weight function over a given mesh intcrbai in each dlrcc- 
tlon at each tlmc level. WC morutor the solutmn from one time level to another to ensure that 
the local error per unit step associated with the time diflcrcncing method is below some 
spesificd tolerance. The method is applied tc) bcberal cxampleb iurolclng c.wthclmic. diffuwr~- 
controlled. self-propagating reactions in packed hed reactors r I%h Az~dcmw Prch. Ini 

I. INTKOIxCTIoN 

Solid solid, diffusion-controlled alloying reactions are important in numerous 
pyrotechnical and metallurgical applications. Problems of this type arise when a 
suitable mixture of powder!, composed of oxidizing and reducing agents is heated. 
Due to the large quantity of heat cvolvcd, a self-propagating reaction front can 
develop. In the unreacted zone ahead of the front there is essentially no physical 
change in the powders, while behind the front, the reaction is complete and the 
temperature is very high due to the released chemical cncrgy. Although reactions of 
this type arc highly exothcrmic, large initial quantities of energy are often required 
to initiate a self-propagating front. In addition, one component of the system often 
melts before the chemical heat release becomes large L I]. The increase in the reac- 
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2 SMOOKE AND KOSZYKOWSKI 

tion rate due to melting can be attributed to the larger liquid-solid as opposed to 
solid-solid diffusion rates. One-dimensional aspects of this problem, such as burn 
velocity and its dependence upon various parameters, have been reported 
previously in [Z]. 

The model we develop is physically consistent with the above considerations and 
the developing reaction front is often very narrow with regions of high spatial 
activity (sharp peaks and steep fronts) in both the temperature and the species con- 
centrations. These high-activity regions move as the front advances in time. In 
addition, the time scales in the problem can change by several orders of magnitude 
before and after the melting process. Before the melting occurs, the time rate of 
change of the temperature and the species concentrations is small since the process 
is controlled by thermal diffusion. After melting, the chemical term becomes 
dominant due to the large reaction rates and hence the time scale in the problem 
decreases substantially. 

The complexity of the governing equations prevents exact analytical solutions 
from being obtained. Therefore, numerical methods must be used. Traditional finite 
difference methods attempt to solve problems of this type by using an equispace or 
mildly nonuniform grid held fixed for the entire calculation. Application of such 
methods in two dimensions can require an excessively large number of grid points 
to resolve accurately the regions of high spatial activity. As was the case in one- 
dimensional problems [Z], we anticipate such an approach to be computationally 
inefficient when compared to methods that place grid points adaptively in such 
regions. 

The equations for this problem can be case in the general form of two-dimen- 
sional mixed initial-boundary value problems. 

where u, f, g, and r are N vectors and the computational domain Q is the rec- 
tangular region enclosed by 0 <x < 1, 0 < J < 1. The boundary of Q is denoted by 
SL?. Problems similar in form to (1.1) can also arise in a variety of other physical 
problems. 

In this paper we develop an algorithm that obtains fully adaptive (space and 
time) solutions to equations of the form (1.1). We generalize to two dimensions the 
fully adaptive algorithm developed in [Z] for one-dimensional mixed initial-boun- 
dary value problems. By discretizing the time derivatives in (1.1) we obtain a non- 
linear elliptic boundary value problem at each time level. We solve these problems 
by a finite difference procedure. Grid points are chosen adaptively such that 
positive weight functions in both the x and ~1 directions are equidistributed over 
each subinterval. This variable node static rezone approach has the advantage of 
automatically adjusting the number of grid points as the numerical solution is 
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advanced in time. As in the one-dimensional case, however, there are problems in 
which the time evolution of the solution is such that we may not have to increase or 
decrease the number of grid points. In such cases we move a fixed number of nodes 
by extrapolating their positions from previous time Ievels. We also monitor the 
solutions of the boundary value problems from one time level to another to ensure 
that the local error per unit step associated with the time differencing method is 
below some specified tolerance. In the next section we present the solid-solid alloy- 
ing model and in Section 3 we develop the fully adaptive algorithm. The method is 
applied to several example problems in Section 4. 

2. PROBLEM FORMULATION 

We model solid-solid, diffusion-controlled alloying reactions by assuming we 
have a mixture of two powders, e.g., aluminum and palladium (for a discussion of 
this system, its parameters, and typical reactor design see Birnbaum [3,4]). We 
further assume that at a given temperature one of the metals melts and coats the 
spherical particles of the second material. The unmelted material is assumed to be 
of uniform size and to have a radius R. The melted material then diffuses into the 
unmelted sphere at which point it reacts and releases chemical energy. The ther- 
modynamic properties of the reacted and unreacted materials are assumed to 
remain constant over the temperature range considered, We model this process with 
a nonlinear energy equation coupled with a time-dependent source term. We do not 
allow for macroscopic mass transport. With these approximations the governmg 
equations can be written (see, e.g., Booth [S]): 

2~ D exp( -E/T). ( 1 - ~p’:~ -= 
St R1 1-(1-Zj13’ 

(2.2) 

where T is the temperature and z the fraction of the product formed. The initial 
conditions are given by 

z-(x-, J’, 0) = T,(x, y), (X,j.)EQ, (2.3 ‘j 

z(x, y, 0) = z,(x, y), (x, y) E 52, !24) 

and the boundary conditions by 

g,(O, J’. f, T) = 0, O<J36 1, r>o: (2.5) 

gr( 1, 3’, f, n = 0, Odl’dl, t>o, (2.6) 

g&G 0, f, n = 0, Odsd 1, t>o, (2.7'j 

g‘&, 1, t, T) = 0, o<xcd 1, r>o. (2.8) 
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In the applications we consider r, and z0 will be constant throughout the domain 
Q. In addition to the quantities already defined, dh denotes the heat of reaction, k 
the thermal conductivity, c the specific heat, p the density, D a reaction rate, and E 
the activation energy. 

Several other conceptually as well as functionally simple models for the source 
term have been suggested. Hardt and Phung [ 11 have discussed a model that views 
the reactor as being made up of alternating slabs of reactants. They assume the 
chemistry is fast so the source term is limited by linear diffusion in the slabs. The 
resulting expression is 

i?z D exp( -E/T) 
at’ 1w;z ’ (2.9) 

where z is the fraction of the product formed, D is a rate constant, E an activation 
energy, and M:& is related to the slab thickness. 

A second model has been discussed by Margolis [6]. He uses asymptotic 
methods to investigate instabilities of the planar solution. In this model the 
chemistry gives rise to the source term and is assumed to have the usual Arrhenius 
form. The general bimolecular Arrhenius expression can be written 

az 
Ir = k[A] [B] exp( - E,IT), 

where [A] and [B] are the reactant concentrations, /t is the rate constant, and E is 
the activation energy. 

We have chosen to focus on the model in (2.1)-(2.8) where the source term is 
limited by spherical diffusion. Although the third model has been successful in 
predicting experimentally observed pulsating modes of propagation, it does not 
address the effects of particle size. In addition, it is not applicable to a class of reac- 
tions that are known to be diffusion controlled. The first model does address the 
question of particle size and diffusion; however, we found it produced pulsating 
burn fronts for even low activation energies. We point out that care must be taken 
to assure that the rate terms in (2.2) and (2.9) remain bounded for z = 0. In prac- 
tice, the initial value of z0 is set equal to a small positive number. Furthermore, the 
rate expression in (2.9) is positive even after the reaction has finished and the burn 
fraction is equal to one. The expression in (2.2) however, approaches zero 
smoothly as the burn fraction approaches one. 

3. METHOD OF SOLUTION 

In this section we develop a method that obtains fully adaptive solutions of (1.1). 
We point out that a variety of approaches has been developed recently for solving 
time-dependent partial differential equations with adaptive spatial grids. In one 
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dimension, for example, there is the moving finite element work of Miller and 
Miller [7] and Gelinas, Doss, and Miller [S]. the adaiptive finite element method 
of Davis and Flaherty [9], the arclength approach of White [IO], and the fully 
adaptive method of Smooke and Koszykowski [2]~ Other methods have been con- 
sidered by Bolstad [ 111, Dwyer, Kee. and Sanders [ 121. and Winkler. Norman, 
and Newman 1131. Much less work has been published for two-dimensional 
problems. We mention, in particular, the moving finite element work of Djomehn 
and Miller [14]. the local mesh refinement method of Berger, Gropp, and Oiiger 
[lS] (see also Berger [16] and Gropp [17]) for hyperbolic problems, and the 
finite difference method by Dwyer, Smooke, and Kee [lS]. 

These adaptive algorithms can be interpreted in terms of equidistributing a 
positive weight function over a given interval at each time level. (,For an interesting 
discussion of these ideas see Herbst, Mitchell, and Schabombie [193.) The major dif- 
ferences in the methods center around the choice of the weight function and 
whether or not the mesh is coupled with the calculation of the solution. With the 
exception of the explicit time stepping methods of Bolstad in one dimension and of 
Berger, Gropp, and Qliger in two dimensions and the implicit method of Smooke 
and Koszykowski in one dimension, all of the adaptive methods mentioned above 
move a fixed number of grid points. While we believe that one does not have to 
couple the calculation of the solution components with the nodes to obtain accurate 
resolution of high-activity regions, we do believe that the adaptive mesh algorithm 
must be able to adjust automatically the number of nodes needed to maintain a 
specified degree of accuracy in the numerical solution. This is particularly important 
in unstable combustion problems. 

Much of our development parallels that of [Z]. We therefore abbreviate our dis- 
cussion on those common features and focus our attention instead on those issues 
pertinent to the two-dimensional generalization. As was the case in [Z], we arc par- 
ticularly interested in problems that occur in combustion. Such problems require 
the use of implicit time discretization methods. In the discussion that follows xwe 
develop the adaptive algorithm using a backward-Euler approximation to the time 
derivatives in ( 1.1). As we pointed out in [Z]. a higher-order backward differen- 
tiation formula, for example, could be used as well. 

Our goal is to obtain a numerical solution of ( 1.1) at the time levels 0 = I” < f ’ < 
I’ < ... < fJ = .Y, for some finite time J. If for z function g we define g’(.~~ J’; = 
g(s, E’, t”), II = 0, l,..., J, then, upon replacing the time derivatives in (1.1) by a 
backward-Euler approximation and upon neglecting the time discretization error, 
we have the following semidiscrete approximation to (1.1 ), 

g(x, I’, trz+ ‘, 6” + lq t;;+ 1, 1”: + :) = 0, on SSL. ja.1 ,i 
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II = 0, l,..., J- 1, where the time step z”+’ = t”+’ - t”. We point out that solution of 
the original mixed initial-boundary value problem is reduced to solving a nonlinear 
elliptic boundary value problem at each time level. We solve the boundary value 
problems by applying a finite difference method. 

Newton’s A4ethod 

We want to obtain a discrete solution of (3.1 j on the mesh A” + I where the 
nodes are formed by the intersection of the lines 

and 

,i/e:+‘= (O= ! y;++;+‘< ... <y”,f;,‘,=l), (3.3) 
? 

where h’:;‘=x:‘+‘-,yyf-,L, i= 1, 2 ,..., A!;+‘, and “;,: I= y;” - p;, 
j=l,Z ,..., A’; + ‘. We include a superscript on the mesh since, in general, the num- 
ber and/or the locations of the grid points in both the x and 2’ directions can differ 
from one time level to another. 

The spatial derivatives in (3.1) are approximated by finite differences. Omitting 
the time level superscript, we can write 

and 

where 

g;+,/2,.iJgi+l.;+ gi+ 

a,ygi+ ,,.i= (gi;,,.- gJ, 
1 X.! + I 

(3.4b) 

(3.5a) 

Wbj 

and where we denote gi,i = g(x,, v,), i= 0, I ,..., M,, and j= 0, l,..., M,,. Similar 
expressions can be derived for derivatives with respect to y. 

If the differential operators in (3.1) are replaced by expressions similar to those in 
(3.4)-(3.5), the problem of finding an analytic solution of (3.1) is converted into 
one of finding an approximation to it at each point of the mesh A”+ ‘. If we denote 
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this approximation by I$,? ‘, we seek the solution 1” + ’ = (L$; l7 cl,:- I,.~.” $,tir l,rfY. i )’ 
of the system of nonlinear difference equations 

R( i.m + ’ ) = F( b/7’ + ’ ) - ( “;:+y ‘v”) = 0% il 3 0. (3.6 
\ ,! 

The nonlinear equations in (3.6) can be solved by Newton’s method. We write 

c > 
(v;I:=i- p’;+ 1) = -&P-( k’;+ 1 ). n30. k=O, l,.... (3.7 j 

\ 

where V”+ r denotes the kth solution iterate, /I, the kth damping parameter 
(0 <Z < 1 ), I the identity matrix, and J(L’F+ ‘) = 2F( V;if’);‘FV”f’ the steady-slate 
Jacobian matrix. As in the one-dimensional problem, a linear set of equations is 
solved for corrections to the previous solution vector. 

In a number of combustion problems we have found the cost of forming and then 
factoring the Jacobian matrix to be a significant part of the cost of a full Newton 
step (see, e.g., [21]). In such problems it is natural to apply the modified Newton 
method in which the Jacobian matrix is only periodically reevaluated. We employ 
the error estimate derived in [20] to determine whether the sequence of successive 
modified Newton iterates is converging at a fast enough rate. If the rate of con- 
vergence is too slow we revert to a full Newton method. 

.idaptivr Gridding 

As in the one-dimensional case, if the boundary value problems in (3.1) admit 
solutions that exhibit a high degree of spatial activity, it is important for reasons of 
accuracy and computational efficiency that grid points be place in these regions In 
two-dimensional problems the use of a fixed equispaced or mildly nonuniform grid 
can require an excessively large number of points to obtain a solution to a preset 
level of accuracy. 

We determine the grid points of the two-dimensional mesh -N” + ’ by generalizing 
to two dimensions the concept of equidistributing a positive weight function over a 
given interval (see, e.g., 1221). In one-dimensional problems we say that a mesh i H 
(with M points) is equidistributed on the interval 0 d x < 1 with respect to the non- 
negative function W and constant C if 

In two-dimensional problems we attempt to equidistribute the mesh JY with 
respect to the nonnegative function I+*., and constant C., for each of the MI, -t i 
horizontal grid lines. We write 

1 
Xc+ I 

W, d,u = C,, i = 0, l,..., M, - 1, (3,9) 
- XI 
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for j= 0, l,..., AL?,. Similarly, we attempt to equidistribute the mesh ~3, with respect 
to WY and C, for each of the M, + 1 vertical grid lines. We have 

s )‘/+I Wydy=C,,, j=o, l)...) M,.- 1, 
li 

for i= 0, l,..., M,. The choice of the weight functions is somewhat flexible. They 
should be chosen, however, such that grid points are placed in regions of high 
spatial activity with the goal of reducing the local spatial discretization error (and 
hopefully the global error). We equidistribute the difference in the components of 
the solution and its gradient between adjacent mesh points. Upon denoting the vec- 
tor 6 = [a,, Gz ,..,, t71v]r, we seek to obtain a mesh 4” such that 

--‘I,+ I dck 
J /I Z d.vda lmax L7/,-min5,(, 

i = 0, I,..., M, - 1, 

Yl Q Q k = 1, 2 ,..., N, 
(3.11) 

and 

{I” 121 dx<p ;rnzx 2--mm 21, k i = = 1, 1, 2 2 ,..., )...) M, N, - I) (3.12) 

for each of the M,.+ 1 horizontal grid lines, and we seek to determine a mesh J$ 
such that 

1 
?,+I dck 

i 1 - dJ><y lmax u‘,-mintr,J, 
j=o, I,...) My- 1, 

l’i dY k = 1, 2 ,..., N, 
(3.13) 

n Q 

and 

for each of the M, + 1 vertical grid lines. The quantities a, /I, y, and 6 are small con- 
stants less than one to be chosen by the user. 

1 

t 
Y 

II: 
0 1 

X- 

FIG. 1. Example of a two-dimensional grid. 
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0 
0 

X- 1 

FIG. 2. Local refinement of the two-dimensional grid. 

In implementing the adaptive mesh algorithm we first solve the boundary value 
probiems in (3.1) on a coarse mesh. The maximum and minimum values of t;;-, 
dEk/dx, and dVk/dy are obtained and we test the inequalities in (3.11) and (3.12! 
one x subinterval at a time for all the “j” grid lines. If either of the inequalities is not 
satisfied a grid point is inserted at the midpoint of the .‘c subinterval in question for 
i = 0, l,..., M,,. Once this procedure has been carried out in the x direction we check _I 
the inequalities in (3.13) and (3.14) one J’ subinterval at a time for all “i” grid lines. 
If either of the inequalities is not satisfied a grid point is inserted at the midpoint of 
the subinterval in question for i = 0, l,..., M,. For example, suppose we have a two- 
dimensional mesh as in Fig. 1. Suppose further that the inequalities in (3.11))(3~14) 
imply that the mesh should be relined as in Fig. 2. Since we add grid points globally 
in each direction, the mesh we actually obtain is illustrated in Fig. 3. We observe 
that each grid line is connected to two sides of the region L?. While there can be a 
loss of efficiency due to the introduction of “unwanted” nodes, this type of grid 
refinement algorithm does not require a sophisticated data structure and it enables 
the Jacobian matrix in (3.7) to be evaluated efficiently on vector machines (,see 
below). 

An equidistribution procedure such as that in (3.9) and (3.10) may produce a 
mesh that is not smoothly varying. We have found that this can affect the con- 
vergence properties of the method as well as its accuracy. As in the one-dimensional 
case, we also require that the mesh be locally bounded. We require that the ratio of 

FIG. 3. Global refinement of the two-dimensional grid. 
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adjacent mesh intervals in the x and J directions be bounded above and below by 
constants, i.e., 

and 

1 
-<A< h: A,., A,, hy.j- 1 j = 2, 3,..., M .b’ 2 (3.16 

where A, and A,, are constants 2 1. Values of A, and A, close to one produce very 
dense quasiuniform grids in each direction. Large values of these contants often 
produce convergence difficulties. Based upon our numerical experiments, we have 
found values of J4, and A.,, between two and six to be adequate. In the calculations 
described in Section 4, .4 ‘c and A!. were set equal to four. Such a two-dimensional 
buffering tends to smooth out rapid changes in the size of the mesh intervals. Once 
the equidistribution conditions are checked, we determine whether grid points must 
be inserted to satisfy (3.15) and (3.16). Once (3.11)-(3.14) and (3.15)~(3.16) are 
satisfied, the previously converged numerical solution is interpolated onto the new 
mesh and the result serves as an initial solution estimate for Newton’s method on 
this liner grid. The process is continued until the inequalities are satisfied. 

Imerpolation 

The boundary value problems in (3.2 j are inhomogeneous. Their solution 
requires a knowledge of the solution of the boundary value problem from the 
previous time level. If the same spatial grid were used for every time level, then this 
solution information would be available. The number and the locations of the grid 
points would not change as the calculation was advanced in time. In our case, 
however, we may have to determine adaptively the mesh every time the boundary 
value problems are solved. As a result, we anticipate that the number as well as the 
locations of the grid points may change from one time level to another. When a 
grid point at time level n + 1 does not have a point whose location is identical to a 
point at time level n, we form v:fj by interpolation. Suppose that the relation of the 
point P = (x; + I, .1;” + ’ ) to grid points at the nth level is as illustrated in Fig. 4. We 
assume that the x and y coordinates of P can be bounded above and below by 
points from the nth level, that is, we assume 

(3.17) 

and 
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FIG. 4. Illustration of grid points at time levels n and IT+ 1. The physica! location of point P does 
not coincide with points at level II. 

We obtain ~32; by forming 

(3.19) 

As in the one-dimensional problem, an additional spatial discretization error is 
introduced into our algorithm as a result of the interpolation procedure. In par- 
ticular, for a function g(s, J, t) that is three times continuously differentiable in the 
domain (Q x [O, T]), we can write 

where gyj is similar in form to (3.19). The discretization error associated with the 
time derivative term has an additional error O( h:,: + I(xy + 1 - x’g );‘T” + ’ + 
“;t,! + I( y; + i - Jy )ir” + ’ ) that modifies the way in which the adaptive time steps are 
chosen (see below). 

Grid Propugiation 

By solving the boundary value problems adaptively, we have the ability io 
increase or decrease the number of grid points required to equidistribute the weight 
functions at every time level. As our one-dimensional results indicate, this is impor- 
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tant in unstable burn front problems [2]. The method is not without cost, however; 
since the time differencing method is implicit, we must solve a system of nonlinear 
equations at each time level. The use of Newton’s method implies that a Jacobian 
matrix must be formed and the Newton equations solved at each time level. If at 
some time during the calculation the solution can be determined accurately with a 
fixed number of (possibly moving) grid points in each direction (e.g., a stable 
front), then the Jacobian can be held fixed; its factorization can be stored and the 
cost of propagating the solution will be less than if the variable node approach had 
been used. 

Most of the adaptive methods that have been used to solve both one- and two- 
dimensional time-dependent problems move a fixed number of grid points. In our 
approach we begin the calculation by applying a variable node static rezone 
method-the boundary value problems are solved adaptively at each time level. 
Once the number of nodes required to satisfy (3.1 l)-(3.16) remains constant in 
each direction for several time levels. we predict the locations of the grid points by 
solving 

and 

Yj(0) = g-1. 

i= 1, 2 M,- I, ,..., (3.21) 

j= 1, 2 )...) M,.- 1, (3.22) 

These equations can be integrated to yield 

li(t)=(J+y) t+x:‘-‘, i= 1, 2 ,..., hi,- 1, 

and 

(3.23 ) 

Both the x and J’ nodes are extrapolated linearly from their positions at time levels 
?I and n - 1. If the extrapolation procedure moves the nodes out of the region of 
high spatial activity, the buffering of the mesh produced by (3.15) and (3.16) 
absorbs some of the inaccuracy of the grid points’ locations. Nevertheless, it is still 
very important to recheck the equidistribution conditions in (3.11)-(3.14) to make 
certain that the extrapolation has followed the regions of high spatial activity and 
that no new nodes have to be added. The potential problems of node tangling and 
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extrapolation out of the computational domain are handled in a manner analogous 
to the approaches used in the one-dimensional case (see [2]). 

Time Stepping 

Our objective is to choose the time steps t”, n = 1, 2,..., J, such that the local error 
per unit step associated with the time differencing scheme in (3.1) is below some 
specified value E. The local error (1.e.) at the point P = (XT+ I9 1:’ I) can be 
estimated by 

l.e.zff ” 

n+l 2 1 ___ + 2bh:,, + I 
2 

(xr+‘-x~)+2ch~,,-!(?::‘+‘-1,;), (3.25) 

where a, b, and c are related to bounds on the quamities d%/dt’, ~‘u,~c?.Y’. and 
d’~,/d$, respectively, in the rectangular region illustrated in Fig. 4. In practice these 
partial derivatives are evaluated by finite differences. 

At the point P we want to determine the value of rfr + ’ such that 

1.e. < 8 E T” + l, (3.26) 

where, as in the one-dimensional problem, 6 is a safety factor designed to account 
for the fact that the expression in (3.25) is only approximate. We determine the 
proper value of the time step by following an argument similar to the one 
developed in [2f. If we denote the last accepted time step by rold, the step we want 
to calculate by t,,,, and the contribution to the local error arising from the inter- 
polation process by E;,,~, then we can write 

and 

a(Y+l 2 old ) 

2 
d 1.e. - E,,~ (3.28) 

If we eliminate ‘U and then solve the resulting expression for the largest root of r”,&’ r 
we find 

where, to ensure that the discriminant is positive, 

E, J%dl.e. - &int t 
, 

T”+W old 

(3.30) 
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We carry out this procedure for each of the (M”+ ’ - l)(M-; +’ - 1) interior nodes 
and choose Y+’ as the smallest calculated value. 

As was the case in the one-dimensional problem, if &int = 0, then the expression 
for t;A,’ reduces to 

(3.31) 

as one would expect for the backward-Euler method. The restriction on E arises 
from the fact that part of the local error comes from the interpolation process. In 
affect, the expression in (3.30) implies that the interpolation errors cannot be too 
large for a given value of E. If the expression in (3.30) is not satisfied we must 
reduce the interpolation error-for example, by increasing the number of spatial 
nodes. The above analysis can be generalized to accommodate higher-order inter- 
polation and time discretization methods. 

Computational Considerations 

Selection of the damping parameter 1, has been studied in depth by De&hard 
[23]. While we have implemented a variation of his method for nonsingular 
Jacobians, we almost always take full Newton steps. We terminate the Newton 
iteration when 

where we typically take TOL < 10P5. 
The converged numerical solution at the /lth time level provides an excellent 

initial approximation to the solution at level n + 1. We implement this approach 
when the number of grid points remains fixed from one time level to another. 
However, in a two-dimensional calculation, such an approach can increase rapidly 
the number of grid points when used with a variable node static rezone technique. 
The converged solution at level y1+ 1 would contain all the nodes from the rzth level 
plus those added at the current level. To avoid this possibility, we generally use 
one-half the number of grid points from the n th level as our starting mesh for time 
level II + 1. This procedure restricts the unwanted growth in the number of nodes 
during the variable node part of a calculation. 

The initial time step used at the current time level is the last value calculated 
from (3.29). If using this step we are unable to obtain convergence in our Newton 
iteration, we halve the time step and restart the calculation at the current time level. 
If Newton’s method converges, we calculate a new value of the time step using 
(3.29). If we find that the calculated step is smaller than the value we have used, we 
redo the calculation at the current time with the new value of tfiCL. Otherwise, we 
proceed to the next level and continue the process with the calculated value from 
(3.29). 
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Numericai Jacobian 

The Jacobian matrix can be written in block pentadiagonal form. We have found 
that in a number of combustion problems (see, e.g., [Zl]) it is often more efficient 
to evaluate the Jacobians by finite difference procedures as opposed to analyticai 
means. The method we implement generalizes ideas outlined by Curtis, Poweii. and 
Reid [HI. The idea is to form several columns of the Jacobian simultaneous& 
using vector function evaluations and the Jacobian’s given sparsity structure. We 
point out that, while the Jacobian can be assembled one node at a time, such a 
procedure is not as efficient computationally when implemented on a vector 
machine as forming the Jacobian with vector function evaluations (the total num- 
ber of component function evaluations being the same in both cases). As a result. 
even though the global grid refinement strategy adds extra points compared to a 
local refinement procedure, some of the efficiency loss is made up by the fact that 
the Jacobian formation can be vectorized. A variable node local grid refinement 
strategy. however, may ultimately be the method of choice for this class of 
problems. 

FIG. 5. Temperature profiles for test Problem 1. The burn front is quasi-one-dimensional 
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If to each column of the Jacobian we associate the i and j values of the node 
corresponding to the column’s diagonal block, then all columns of the Jacobian 
having the same value of the parameter 

a = (i+ 3j) mad(5), (3.33) 

can be evaluated simultaneously. Ideas along these lines have been explored in a 
more abstract seding by Newsam and Ramsdell [ZS] and Coleman and More 
[26]. Once the Jacobian is formed, we solve the Newton equations with a block- 
line SOR method. 

4. NUMERICAL RESULTS. 

In this section we illustrate application of the method in the solution of three 
soliddsolid alloying problems. We apply the variable node static rezone method 
with grid extrapolation to an aluminum-palladium system. While a detailed 
numerical study similar to the one performed in [2] should ultimately be under- 
taken to compare the merits of various two-dimensional adaptive algorithms, this is 
not our intention here. Our goal instead is to illustrate the effectiveness of our 
adaptive algorithm in such problems. 

We consider three problems. All of the calculations are performed on a reactor of 
length 1.5 cm and width 1 cm (in the calculations, however, the lengths of both 

-X IN CM X IN CM 

X IN CM 
6.5 1.0 

X IN CM 

FIG. 6. Isotherms for test Problem 1. The isotherms increase from right to left in 500K increments 
(500, 1000 ,..., 2500K). 
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sides and the temperature are scaled between 0 and 1). The first is a quasi-one- 
dimensional problem in which the temperature of one of the reactor walls is linearly 
ramped up to 2000K. Since there is no heat loss in the J direction, the problem is 
effectively one dimensional. In the second problem one of the reactor walls is 
initially heated with a Gaussian temperature ramp. In one case not enough heat is 
supplied and the reaction is eventually extinguished. ‘When the peak input tem- 
perature is doubled, a symmetric two-dimensional burn front develops. Heat is also 
removed from the system along the walls of the reactor. Finally, we consider a reac- 
tor in which the distribution of particles is nonuniform. The smallest particles are 
located along the top and bottom walls of the reactor. As a result, the front 
propagates fastest down these walls. The values of the rate and transport 
parameters used in the calculations were obtained from Birnbaum [3,4]. In par- 
ticular, we set k,‘pc = 2.5 x 10 ~~ 5, d HJpc = 2.8 x 10 ~ 3, D/R2 = 5.8 x 103, and E = 
I.1 x 10”. The adaptive grid quantities (‘Y, /?, 11’. and 6) were set equal to 0.1: vihich 
when combined with a time tolerance of 10P3 assured us of three places of accuracy 
in the velocity of propagation. All of the calculations were performed on a CRAY- 
IS computer. 

PROBLEM 1. The first example we consider is a uniform packed reactor ignited 
along the wall J’= 0. The initial conditions for the problem are given by 

l-(x, y, 0) = 300, 

3(x, y, 0) = 10 ~ 3: 

and the boundary conditions for t < 0.05 by 

I-(0, I’, t) = 3.4 x 1Olt + 300, 

g (l.j,J’, t)=o, ‘S 

FIG. 7. A typical two-dimensional adaptive grid for test Problem 1. 

(4.1) 

(4.2) 
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g (cc, 0, t) = 0, 0 < x < 1.5, (4.51 

g (x, 1, t) = 0, o<x< 1.5. (4.61 

For t > 0.05 the boundary conditions remain the same except for the heated wall. In 
this case we have 

g (0, I’, I) = 0, odJ-6 1. (4.71 

Since there are no initial variations in the y direction and since no heat is either 
added or removed in the y direction, the problem is effectively one-dimensional. We 
use it, however, to illustrate the computational method and to test it against an 

FIG. 8. Temperature profiles for test Problem ia. Not enough heat has been supplied to the reactor 
and the reaction goes out. 
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equispaced calculation. The calculation is begun on a grid with 5 equispaced nodes 
in both the x and J directions, As the integration proceeds, nodes are added or 
removed as dictated by the spatial error tolerances. The maximum number of nodes 
used in the x direction was 49 and in the J direction 5. The minimum grid spacing 
rn the x direction was 0.003 cm, which implies that 500 equispaced s nodes would 
be required to obtain a solution with comparable accuracy. An equally spaced 
calculation was run using only 100 x nodes and the burn front failed to propagate. 
In fact, we were unable to obtain a self-propagating front until several hundred 
nodes were used. We have found (see also [Z] ) that, when too coarse a spatial grid 
is used in problems of this type, heat is often diffused away faster than it is 
produced. As a result, the reaction is extinguished. 

In Fig. 5 we illustrate a sequence of temperature profiies obtained with the adap- 
tive calculation. The profiles show the bed being heated and the subsequent 
propagation of the burn front. The resolution of the burn front with the adaptive 

FIG. 9. Temperature profiles for test Problem 2b. After the source term is turned off. a symmeiwc. 
two-dimensional burn front develops. 
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grid is evident. In Fig. 6 we illustrate the isotherms corresponding to the profiles in 
Fig. 5. The contours increase from right to left in 500K increments (500, 
lOOO,..., 25OOK). Finally, in Fig. 7 we show a typical grid for this calculation. 

Problem 2. Case a. The second problem we consider involves the initiation of 
the powders with a Gaussian heat pulse in the center of the left wall (I’ = 0). The 
initial conditions for this problem are identical to those in Problem I but the boun- 
dary conditions for t d 0.05 are 

T(0, y, t) = [(3.4 x 10’) exp( - 106( y - O.S)‘)] t + 300, Odydl, (4.8) 

g (1.5, I’, t) = 0, Odydl, (4.9) 

g (x, 0, t) = 500( T- 300), Odxd 1.5, (4.10) 

g (x, 1, t) = -5OO(T- 300), OGx61.5. (4.11) 

For t > 0.05 the boundary conditions remain the same except for the heated wall. In 
this case we have 

X IN CM 

x/-,--l 
0.0 05 1.0 15 

X IN CM 

O<y<l. (4.12) 

X IN CM 

X IN CM 

FIG. 10. Isotherms for test Problem 2b. The isotherms increase from right to left in SOOK increments 
(500, 1000 ,..., 2500Kj. 
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In this problem the center of the left wall is heated up most rapidly. Once the 
temperature reaches its peak value, the heat source is turned off and the wall 
becomes insulated. The value of the heat loss in (4.10) and (4.11) was chosen to 
assure wall temperatures several hundred degrees cooler than the interior of the 
bed. In practice, the heat loss parameters would be determined from the reactor 
material and the environment surrounding the reactor. In Fig. 8 we illustrate the 
temperature profiles for this set of initial and boundary conditions. After the initial 
heat pulse, the source is turned off and the reaction fails to propagate; the heat 
pulse simply diffuses into the reactor. It is worthwhile to point out that initiation 
can be a sensitive probe into the kinetics of pyrotechnic processes. We anticipate 
that this type of calculation combined with detailed experiments could prove to be 
a useful tool in such situations. 

Case b. We next doubled the peak temperature of the heat source. in this case 
the reaction began to propagate. The resulting temperature profiles are illustrated 
in Fig. 9. The temperature at the left wall increases until the peak temperature is 
reached. The heat source is then turned off and, as heat begins to diffuse in both the 
.Y and .t directions, a symmetric two-dimensional burn front develops. As the front 
propagates down the reactor, it eventually reaches the top and bottom walls (y = 0 
and J = 1). We then obtain a quasiplanar burn front. The temperature profiles In 
Fig. 9 clearly illustrate the narrow reaction region and the ability of the adaptive 
grid to resolve the front. The corresponding temperature contours are illustrated in 
Fig. 10. Again, they increase from right to left in 500K increments. A sample grid is 
shown in Fig. 11. 

The minimum numbers of nodes used in the x and 1’ directions were 13 and 9. 
respectively. The maximum number was 63 for the x direction and 99 for the J’ 
direction. In addition, the minimum mesh spacings were 0.005 and 0.006 for the x 
and 4’ directions, respectively. This implies that to obtain similar results with an 
equispaced grid we would need well over 40,000 grid points. We performed a 
calculation with 10,000 (the limit of our capacity) equispaced nodes and found that 
the burn front did not propagate. 

FIG. 11. A typical two-dimensional adaptive grid for test Problem 2b. 
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PROBLEM 3. The final example we consider has a reactor bed in which the dis- 
tribution of particle sizes is nonuniform. We use the same initial and boundary con- 
ditions as in Problem 1. The central part of the bed (0.2 d 3: ,< 0.8 j is packed with 
the largest particles. They are then linearly ramped down by a factor of four at both 
walls (J’ = 0 and y = 1). The density and thermal conductivity are held constant 
based upon the results of Dletz [27]. Since the source term is proportional to l/R”, 
the sections of the reactor with the smallest particles ignite first and the reaction 
starts to propagate along the reactor’s top and bottom walls. 

The calculation was performed with an initial grid consisting of 10 equispaced 
points in both the x and ~1 directions. In Fig. 12 we illustrate the temperature 
profiles. We see the early initiation of the reaction near the two walls. In addition, 
before the source term has been turned off (the temperature in the center of the bed 

0 0 

FIG. 12. Temperature profiles for test Problem 3. The reactor has a nonuniform distribution of par- 
ticle sizes. 
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FIG. 13. Isotherms for test Problem 3. The isotherms increase from right to !ef! in 5@0K kcrcnxxs 
iSO0, 1QOO ,.... 2SOOK). 

is still rising), the front has propagated a considerable distance down the sides of 
the reactor. This behavior is also seen in the isotherms in Fig. 13. We observe a 
“‘parabolic” burn front due to the faster burn velocity near the wails. The minimum 
number of .Y and y grid points was 10 while the maximum used -was 98 in the x 
direction and 86 in the ~3 direction. The minimum mesh spacings were 0.0004 cm in 
the x direction and 0.006 cm in the 1% direction, Such a grid distribution wou!d 
correspond to an equispaced calculation with over 600,000 nodes. The m-core 
storage of the mesh alone could be far too large for many mainframe compukrs. 
Once again a calculation with a total of 10,000 equispaced grid points failed IC 
propagate. A typical grid for this problem is illustrated in Fig. 14. 

0.5 ,i 

.i: IN CM 

FIG. 11. 4 typical two-dimensionai adaptive grid for test Probiem 3. 
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5. SUMMARY 

We have developed a variable node adaptive algorithm for solving two-dimen- 
sional mixed initial-boundary value problems. The method adaptively adjusts the 
number of grid points in each direction such that positive weight functions are 
equidistributed approximately. In addition, we chose the time steps such that the 
local error per unit step is below some tolerance. When the solution can be 
propagated with a fixed number of points, we use grid extrapolation. This reduces 
the number of Jacobian evaluations that must be performed. 

We have applied the method to the solution of several problems involving the 
burning of metallic powders. In each example we have obtained smooth burn fronts 
in both space and time. The adaptive selection of grid points has enabled these 
problems to be solved with a fraction of the number of points required by an 
equispaced method. In addition, for two of the three test examples, we could not get 
the reactions to propagate with the maximum number of in-core equispaced nodes 
allowable on our mainframe. The source term used in each example was derived on 
the assumption of infinitely fast chemical reaction rates and the diffusion of heat 
into a sphere. While other source terms have been suggested, we have found the 
model proposed in this paper to be realistic in its ability to predict initiation and 
the effect of burn velocity on particle size distribution. The method developed in 
this paper could be applied equally well to a number of other physical problems. 
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